
.
l
o

f
the

oined
rbitrary
ertial
to
as a

gian
was

was

ngly
me was
AN
d our
vored
Experiences Developing ALEGRA: A C++ Coupled Physics

Framework*

Kent G. Budge†

James S. Peery‡

Abstract

ALEGRA is a coupled physics framework originally written to simulate inertial confinement
fusion (ICF) experiments being conducted at the PBFA-II facility at Sandia National Laboratories
It has since grown into a large software development project supporting a number of computationa
programs at Sandia. As the project has grown, so has the development team, from the original tw
authors to a group of over fifteen programmers crossing several departments. In addition, ALEGRA
now runs on a wide variety of platforms, from large PCs to the ASCI Teraflops massively parallel
supercomputer. We discuss the reasons for ALEGRA’s success, which include the intelligent use o
object-oriented techniques and the choice of C++ as the programming language. We argue that
intelligent use of development tools, such as build tools (e.g.make), compiler, debugging environ-
ment (e.g.dbx), version control system (e.g.cvs), and bug management software (e.g. ClearDDTS),
is nearly as important as the choice of language and paradigm.

1 Introduction

ALEGRA is a coupled physics framework whose roots go back to 1990, when the authors j
Sandia National Laboratories and began development of a shock physics code based on a
Lagrangian-Eulerian finite element algorithms. This code was intended to support the in
confinement fusion (ICF) program built around the PBFA-II facility by providing a way
simulate the implosion of ICF target capsules driven by light ion beams. Originally the code w
variant of the PRONTO finite element code [1], which had proven successful for Lagran
transient dynamics analysis and was felt to provide the necessary framework. PRONTO
written in FORTRAN-77, plus a few C subroutines (mainly for memory management,) and
unusually well-structured and -documented.

As work on the new code (originally named RHALE) progressed, it became increasi
burdensome to add new features to the existing framework. The memory management sche
difficult to work with and such minor nuisances as the 19-line continuation limit on FORTR
statements became major stumbling blocks. The lack of type checking in FORTRAN (an
failure to obtain and use tools such as FLINT) was a constant source of deep bugs. We fa

*This work was supported by the United States Department of Energy under Contract DE-AC04-
94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Compny, for the United States Department of Energy.

†Senior Member of the Technical Staff, Sandia National Laboratories, Albuquerque, NM.
‡Manager, Computational Physics Research and Development (9231), Sandia National

Laboratories, Albuquerque, NM.
1

ause of

the
ergy
more
emory
ve the
mory
es, but

vector
rather

ly the
RISC

n the
eing
rize us
on

f their
nt to
ad we

de the

rmer
till in
d on

s with

iastic
ng
[7], [8],
sion
to the

n
nted

sses
ng.
ency
arch
of
roves

ely
nt of
nced
g to
full-

on
switching development to C but were hesitant to suggest the change to our management bec
concerns about the learning curve and the cost of rewriting legacy code.

Another growing concern was with the issue of parallelization. Our internal customers in
ICF program wanted 3-D simulations in which hydrodynamics, radiation transport, and ion en
deposition were all coupled. Such simulations would require at least an order of magnitude
memory and processor speed than would be available on any single-processor or shared-m
multiprocessor supercomputer under development at the time. It seemed likely (as was to pro
case) that future Sandia supercomputers would be massively parallel distributed me
machines. Therefore, we were expected to develop a code that could be run on such machin
we were also expected to “hedge our bets” by ensuring that the code would also run well on
supercomputers and on shared-memory multiprocessor supercomputers. These are
incompatible goals, particularly when one considers that vectorization often requires exact
opposite programming strategy from that required to make effective use of cache on
machines. However, we were obligated to do our best.

It was at about this time that C++ swam onto our radar screens. We were briefed o
language and its usefulness for massively parallel computing by Ian Angus, then of Bo
Corporation. Our manager also attended the briefing and was sufficiently impressed to autho
to experiment with writing a version of RHALE in C++. Naturally, we dubbed this versi
RHALE++, thus falling into the first common C++ trap:The decision to use a sexy new
programming language is not sufficient to guarantee a sexy new code, and many a
programming team has engaged in dubious advertising by appending a “++” to the name o
product. Had we realized how expensive it would be to convert our programming environme
C++, we doubt our management would have approved the conversion. On the other hand, h
had such miraculous foresight, we would have avoided a number of pitfalls and thereby ma
conversion much less expensive.

We over time have also considered using FORTRAN-90 or HPF. We rejected the fo
because of a discouraging lack of tools (including compilers) and the latter because it was s
an embryonic state. By contrast, C++ was widely available (via cfront) and could be compile
all platforms of interest. Other development tools, such as integrated design environment
source checking, were becoming available as well.

We found programming in C++ to be a very exciting experience and wrote many enthus
articles on our work [2], [3], [4], [5], [6]. We particularly liked the idea of operator overloadi
on concrete data types, which seemed the natural way to express physics as computer code
[9], [10]. Operator overloading is orthogonal to object-oriented programming, but our confu
was understandable given the amount of jargon being thrown around at the time. This leads
rather obvious conclusion:Anyone can throw around a buzz word. Some research is needed to
actually understand its meaning.This is not to deny the value of operator overloading o
concrete types, a topic we discuss in more detail later, but by mistaking this for object-orie
programming (which we now understand to mean programming with polymorphic cla
organized into an inheritance graph) we missed many opportunities for effective programmi

As we continued to develop numerical code in C++, we became aware of many effici
pitfalls and other difficulties in using the language effectively. This lead to considerable rese
and the identification of many of the bottlenecks [2], [5], [8], [10], [11], [12], [13], [14]. Some
these have been fully resolved; others are still being resolved as compiler technology imp
[15].

Prior to 1996, the RHALE++ project, now renamed ALEGRA (on the theory that vagu
feminine Latin names had customer appeal) had grown quite slowly, with the equivale
perhaps three developers working on the code full time. However, after 1996, the Adva
Strategic Computing Initiative (ASCI) and a number of other programs provided fundin
rapidly expand the development effort. The ALEGRA team is now the equivalent of about 10
time developers. We soon learned thatusing a modern language is not enough. One must also
use modern development tools. In particular, we were compelled to adopt the CVS versi

ke use

o the
to
in the

ping
phism

user-
strated

. The
s is a
e 41

miliar
etic is
s taking
ht this

ctions
se
[12].

en an
ient to
control environment and to institute rigorous regression testing. We are also beginning to ma
of the ClearDDTS Web-based bug tracking software.

The ALEGRA code is now approaching maturity, and we have begun to think ahead t
“next” code (or at least to a thorough rewrite of ALEGRA.) We are therefore in a position
pontificate on “lessons learned” and to share our hard-earned experience with other workers
field.

2 Programming a C++ Multiphysics Framework

Here we describe the C++ programming idioms we consider most valuable for develo
multiphysics frameworks. These consist of operator overloading on concrete types; polymor
by inheritance; and polymorphism by genericity.

2.1 Operator Overloading on Concrete Types
One of the first things that attracted us to C++ was the concept of operator overloading on
defined concrete types. We were enthralled with the expressiveness of code such as that illu
in Figure 1:

void Decompose(const double delt, SymTensor& V,
 Tensor& R, const Tensor& L)
{

 SymTensor D;
AntiTensor W, Omega;
Vector z, omega;

D = Sym(L);
W = Anti(L);

z = Dual(V*D);
omega = Dual(W) - 2.0 * Inverse(V - Tr(V) * One) * z;
Omega = 0.5 * Dual(omega);

R = Inverse(One - 0.5 * delt * Omega) *
(One + 0.5 * delt * Omega) * R;

V += delt * Sym(L * V - V * Omega);
}

FIG. 1 Sample code using operator overloading on concrete types

which updates the polar decomposition of the deformation tensor in a deformed solid
equivalent code written in FORTRAN-77 code would be some seven pages in length [5]. Thi
dubious statistic, of course: The supporting class definitions come out of a header file som
pages in length. Each of the objects declared in this chunk of code corresponds to a fa
mathematical object, such as a Cartesian vector or tensor. Vector and tensor arithm
expressed using the appropriate C++ operators and more sophisticated operations (such a
the symmetric part of a tensor or the dual of a vector) are given their usual names. We thoug
was pretty cool stuff, and to an extent we still do.

Unfortunately, most compilers translate this subroutine into sequences of machine instru
that are far from optimal. The biggest difficulty, which we identified in 1994, is that the
compilers insist on storing all class objects in addressable memory rather than in registers
This seems like an obvious thing to do, since class objects are a lot like C structs, but wh
subexpression returns an object that will be used once, then discarded, it is a lot more effic

rform
rete
ndard

ting
ited,
f the

aded
e. The
t, our
d an
ever-

ept
ensors.
rrays

tions.
them

s in a
most

s are
ns are
smal

that
ession
ay’s

y of
onally
rator
ensors

GRA
eneous

edges,
f local
rovide
r each
and

base
anted
other
goals
long

n RISC
a large
ively
Such
uter.

ots of
store the members of the temporary object in registers. Some of the latest C++ compilers pe
this “disaggregation of structs” optimization and produce very efficient code for conc
expressions. A measure of this efficiency is that these compilers produce code for the sta
complex class template that is as efficient as FORTRAN’s built-incomplex type [15].
Unfortunately, with the scientific market becoming a smaller fraction of the total compu
market all the time, support for such specialized optimizations may continue to be lim
although there is some reason to believe they will be important for efficient compilation o
Standard Template Library and therefore of more general interest.

From our perspective as developers of a large physics framework, the use of overlo
operators on concrete types seemed like a natural approach to developing reusable cod
various vector and tensor operations could be coded once and used indefinitely. In fac
PHYSLIB vector/tensor library [7] has held up remarkably well over the years. We envisione
environment in which classes would be developed to represent mathematical objects of
increasing complexity. Unfortunately, it proved extraordinarily difficult to extend this conc
much beyond simple, fixed-size objects such as complex numbers or Cartesian vectors and t
The next level of complexity would be scalar, vector, or tensor fields, represented by smart a
of scalar, vector, or tensor values, with appropriate operations, including calculus opera
Designing beautifully expressive class interfaces for such things was fairly easy. Making
efficient proved to be next to impossible.

The problem is that operator overloads are atomic. If one adds three scalar field object
naive way, one ends up generating at least one temporary object that remains alive (on
compilers) until the end of the block in which the statement is located. Intermediate result
once again being stored in memory rather than in registers. Furthermore, individual operatio
performed across an entire array, quickly flushing the cache. All these things result in aby
performance.

We never did satisfactorily resolve this problem, despite considerable effort. It appears
template expressions [16] may have overcome some of these difficulties, but template expr
code (like all nontrivial template code) tends to severely tax the capabilities of most of tod
compilers. Our resolution of the problem was to drop the idea of building a hierarch
increasingly sophisticated concrete classes and to approach reusability in a more traditi
object-oriented way — through the use of polymorphism. We now restrict our use of ope
overloading on concrete data types to low-level, fixed-size entities such as the vectors and t
discussed earlier.

Before we discuss polymorphism, we should describe the current structure of the ALE
database. The various scalar, vector, and tensor fields are no longer represented by homog
arrays. Instead, the database consists of lists of the various topological entities (nodes,
faces, and elements) making up the finite-element grid. Each entity contains its own array o
data. Fast iterators are provided to traverse each kind of list. Simple access functions then p
fast access to the data within each entity. Because the local data array is identical in size fo
type of entity, specialized fixed-length allocators are provided that improve allocation time
increase main and cache memory efficiency.

In retrospect, the most fundamental problem with our concept of smart arrays for data
storage was that we were trying to reconcile irreconcilable goals. On the one hand, we w
large array objects that could be processed efficiently by a vector supercomputer. On the
hand, we wanted the objects to work well on massively parallel supercomputers. These two
are incompatible. Vector supercomputers work best when they chain operations on very
sequences of data. Massively parallel machines, on the other hand, are usually based o
processors with hierarchical memories that begin with the register set and proceed through
cache and main memory to disk storage (via virtual memory.) A distributed-memory mass
parallel supercomputer can be though of as the ultimate hierarchical memory system.
systems rely heavily on data locality — the opposite of the situation with a vector supercomp
Put another way, a vector supercomputer is best at applying the same operation to l

erous
entity
cache

urned
with
hen

m of
ed to
eful
rphic
oaded
s, once
still

t of
an one

lating
s
r heat

abase.

of the

st time

from

called

the
ed at
, and
ted by a
lus
irect
ot to

t than

e

homogeneous data, while a cached massively parallel machine is at its best applying num
operations to the same small set of data. Our list-based framework, where each topological
owns its own local data array, does an excellent job of keeping the data being processed in
for as long as possible. However, it vectorizes very poorly.

2.2 Polymorphism by Inheritance
Having concluded that operator overloading on concrete data types had its limits, we next t
to the most characteristic technique of object-oriented programming — programming
inheritance graphs and virtual functions. This is what many programmers are thinking of w
they discuss polymorphism, though generic programming (templates) is also a for
polymorphism. We were inclined to view inheritance as a high-level mechanism, best appli
very large objects, but prohibitively expensive within innermost loops. This led to a fairly us
paradigm for object-oriented numerics in which a program consisted of a set of large polymo
objects that communicated with each other and performed internal computations using overl
concrete objects. We planned to add templates to the mix as containers of concrete object
we were confident that compilers were “up to snuff” on template code. (Incidentally, we
haven’t reached that point.) The current version of ALEGRA largely reflects this thinking.

An ALEGRA database consists of a single large object, of classBody, that owns an array of
objects of classRegion . The intent was that each region be operated on by a different se
physics packages. However, in the current version of the code, we have never used more th
Region , which makes the utility of this feature open to question. classRegion is abstract. It
contains the lists of topological entities together with methods for accessing and manipu
these entities, and provides support for h-adaptivity.Region also contains generalized method
for solving certain systems of equations, such as the discretized diffusion equation (useful fo
transport, magnetohydrodynamics, and radiation transport.)

Each class derived fromRegion represents a different physics package.Region is always
inherited publicly, and as a virtual base class, so that there is no duplication of the actual dat
The hierarchy forRegion looks something like Figure 2. For example, ourRMhdConclass,
which is the ultimate physics package for Sandia’s ICF program, combines all the attributes
MhdCon and Radiation classes, which in turn rely on theMag, Solid_Dynamics ,
Hydrodynamics , andDynamics classes, all of which are ultimately derived fromRegion .
None of these classes add anything to the database inRegion . They add a few control variables
and the methods appropriate for simulating the physics they represent.

Only a few virtual functions ofRegion are called by its client,Body . These include
initialization methods, a method to advance a step in time, and a method to determine the be
increment for the next time step. Most of the virtual functions inRegion are used internally, by
derived classes. For example, the time step algorithm for most classes derived
Hydrodynamics is based on the method,Hydrodynamics::Lagrangian_Step . Few
classes redefine this method. However, many classes redefine certain virtual functions
within this method, such asInternalForce .

Another place in which polymorphism is used is in the element hierarchy. Because
ALEGRA framework is based on finite elements, almost all calculus operations are perform
the element level. ALEGRA supports a variety of elements, including 8-noded hexes, 4-, 8-
10-, and 11-noded tets, 6-noded wedges, and 5-noded pyramids. Each element is represen
class derived fromElement , which declares a set of virtual methods for the various calcu
operations. It is worth noting that this arrangement, which has worked quite well, is in d
violation of our earlier rule that polymorphism and virtual functions are high-level concepts, n
be used in innermost loops. The calculus operations for descendants ofElement are seldom used
anywhere else. We have found that the data localization this provides is much more importan
the modest cost of a virtual functionCALL.

A dangerous but useful practice we have adopted is to allocate all elements asElement
objects. These are individually passed to the placementnew operator, as necessary, to set th

eous
antages
e that
ake
f the
it in

matic
by
re

thm,
cts,

d from
rial
irtual
the
ds to
tabase
virtual function pointer to the correct value for each element. Thus, we have an homogen
array of inhomogeneous element types. This provides some savings in space and other adv
at the cost of requiring programmers to strictly adhere to a few conventions. Among these ar
no class derived fromElement can add any new data members to the class, nor can they m
any changes to the interpretation of existing members that would require redefinition o
destructor. We do not particularly recommend this dangerous practice and will probably avoid
future code efforts.

Boundary conditions are also implemented using class hierarchies. For example, kine
boundary conditions used by theDynamics class and its descendants are all represented
descendants of classKinematic_BC , which is an abstract class declaring a number of pu
virtual functions that implement the boundary condition. At the appropriate point in the algori
classDynamics (or its descendant) loops over the list of kinematic boundary condition obje
calling the virtualApply_BC method for each to enforce the boundary condition.

Finally, material models have been implemented as a hierarchy of classes descende
Material_Model . At the appropriate point, each physics algorithm that requires mate
models to close its equations loops over the list of materials in each element, calling the v
Update_State function to revise the state of the material based on the evolution of
simulation in the previous time step. Furthermore, each material model provides metho
inform the database how much storage is required for material history variables, and the da
allocates additional storage for each element accordingly.

Region

Hydrodynamics

Solid_Dynamics

Vortex

Radiation Conduction

HydroCon

SDynaCon

RadHydro

RadHydroCon

Dynamics

Structural_Dynamics

Qse

Qsem

Mag

Mhd

MhdCon

RMhdCon

FIG. 2 Region Class Hierarchy

erful
ade it

have
ility is
appen

ding
) and a
ilable
on in
any

e the
d, we
lass
ome

r the
s) is

s on:

e:

neric
Has this resulted in reusable code? Yes and no. We have found ALEGRA a wond
framework in which to develop and use new physics simulations packages. This has m
easier for us to expand the ALEGRA development team to its current ~15 members, and we
been fairly successful at not stepping on each other’s toes. However, the true test of reusab
for a code to be reused outside its original development shop, and we have not seen this h
yet. One reason is that ALEGRA relies on a large suite of supporting codes, inclu
preprocessing codes (mostly mesh generators) and postprocessing codes (for visualization
number of software tools. Many of these were developed at Sandia and are not easily ava
elsewhere. Another reason is the “not-developed-here” mental block that is much too comm
the scientific and engineering communities. Finally, C++ is a relatively new language, and m
would-be collaborators are deterred by the language barrier, FORTRAN continuing to b
predominant language in the community. However, even if these problems were solve
suspect that ALEGRA would be difficult to introduce into a new environment, because its c
interfaces are not sufficiently transparent to make the framework simple to use without s
expert guidance.

2.3 Polymorphism by Genericity
Although many C++ programmers think of inheritance and virtual functions when they hea
word “polymorphism”, generic programming (programming with class and function template
also a form of polymorphism.

A polymorphic object conforms to the expectation of an algorithm by adapting its type:

class Base { /* ... */ };
class Derived : public Base { /* ... */ };

void My_Algorithm(Base *);

/* ... */

Derived *object;
My_Algorithm(object);

// object is a Base so far as My_Algorithm is concerned

By contrast, a function template confirms its signature to the type(s) of the object(s) it operate

template <class T> void My_Algorithm(T *);

Any_Type *object;

My_Algorithm(object);

// My_Algorithm adjusts itself to make use of Any_Type

These two mechanism are therefore complementary.
A function template does have some expectations of the objects it operates on, of cours

template<class T> T& max(T &a, T &b) { return a>b? a : b; }

In this example, themax function template expects that the ordering operator “>” is defined for
the target type and that this operator returns either abool or a type convertible tobool . These
are rather loose requirements, making templates exceptionally flexible. We believe that ge

any

ading.
luable
ne a
rather
user-

s are
nge

self,
+ is
steep
f the

ard for
much
ing as
e are
e to

(for
iler is
arry
s, and
rhead.

dely
n in
his
rs in a
the
inly
no

rs go

g a
ny

ils to
ing.

ntific
tile to

ore
omes
s data
fairly
programming will prove to be more flexible than programming using inheritance for m
numerical applications.

The existence of function and class templates gives a new significance to operator overlo
In the absence of genericity, operator overloading is cute but nonessential. It provides va
clarity in writing expressions, assuming it is used intelligently, but one can always defi
conventional function instead. In a generic programming environment, the picture changes
drastically, since operator overloads provide a common spelling for operations on both
defined and intrinsic types.

We have not made much use of generic programming in ALEGRA; current C++ compiler
just a little too rocky and portability is still a concern. However, we expect this situation to cha
in time for the next thorough revision of our framework.

2.4 C++ Is the Worst Programming Language, Except For All the Others
Finally, we conclude this section with some observations about the C++ language it
independent of the issues of when and how to use the two forms of polymorphism. C+
described by its critics as an ugly and overly complicated language, with an unnecessarily
learning curve. Unfortunately, there is much truth to this description. The observation of one o
authors (Budge) as a member of X3J16, the ANSI committee that has produced the stand
C++, is that much of the ugliness and redundancy arose out of a desire to maintain as
backwards compatibility as possible. The committee also seemed to believe that support
many programming paradigms as possible was more important than orthogonality. Thes
important considerations, but the effort to satisfy them has made C++ a difficult languag
master.

Another criticism that is still occasionally heard is that C++ is not as fast a language as
example) FORTRAN-77. Our experience is that this is simply not the case if a decent comp
used. Thereis some tendency for novice C++ programmers to use programming idioms that c
an excessive run-time overhead, but nothing in the language requires the use of these idiom
there are almost always equally elegant ways to write the code that do not carry such an ove
(Often, this consists of the use of genericity in place of inheritance.)

Finally, our group has been criticized for using a language that is not the most wi
accepted in our community. It is still the case that a scientific or engineering program writte
FORTRAN will be readable to a larger fraction of the community that one written in C++. T
puts us in roughly the same situation as the first Western scholars to publish learned pape
language other than Latin. It is difficult to know how to respond to this criticism. Outside
scientific community, C++ is probably more widely understood than FORTRAN, and it is certa
more widely taught in the universities. It is an unhappy reality that scientific programming
longer dominates the market. This will force some changes in how scientific programme
about their business.

Our feeling is that C++, for all its faults, is currently the best choice of language for writin
large simulation framework. FORTRAN-77, and even FORTRAN-90, fail to provide ma
features we have grown accustomed to, including both kinds of polymorphism. Java fa
provide genericity or expanded types, which in our minds rules it out for serious programm
Eiffel is an attractive and powerful language, but it has an even smaller following in the scie
community than C++, and at times the structure of this language seems downright hos
symmetric operations.

3 Lessons Learned

The most painful lesson we learned while developing ALEGRA is that one cannot ign
efficiency issues on the theory that getting the algorithm right and the interfaces clean c
before tuning the code. Our original database architecture, based on smart arrays of variou
types (scalars, vectors, and tensors), allowed us to correctly implement our algorithms in a

this
ected

ays be
lists,
with a
cond
loops

to
choice
to our

ld do
ertain
to sit
d the
ering

ithin
ming
rithms
o the
re of
uires
ter does
s will

r than
ssumes
s are
user-

is an
can

. We
, and

-

elegant manner in a relatively short time. Sadly, it proved nearly impossible to make
architecture efficient. The architecture that proved efficient was just as elegant, but resp
certain realities about how the data was stored and processed by the computer.

This leads to the second lesson learned: Representation is important, and it cannot alw
hidden behind the interface of a framework or class library. Smart arrays look different from
and it should not be surprising to learn that replacing our smart array database architecture
list-based architecture required some fairly extensive rewriting of code. A corollary of this se
lesson is that loops are not evil. In fact, the Standard Template Library has illustrated that
(and iterators) can be beautiful.

Finally, much of the success we have had in adapting the ALEGRA framework
accommodate many developers has come from our use of development tools rather than the
of language and programming paradigm. Regression testing has become indispensable
development efforts, as has intelligent version control and formalized bug tracking. We wou
even better to institute formalized documentation and code inspection procedures, but c
institutional barriers have made this difficult. Code inspection requires skilled programmers
in a room and talk for an hour or more rather than sit at their terminals and write code, an
benefits (though very substantial) are not always highly visible. This is unfortunate, consid
the ample body of evidence in favor of code inspection.

4 Conclusions

Our experience with ALEGRA is that it is not always possible to hide data representations w
a framework or class library interface. We therefore see a bright future for generic program
(templates) in scientific and engineering programming. As we see it, general-purpose algo
can be implemented either by allowing the type of the objects operated on to conform t
expectations of the algorithm (via inheritance and virtual functions) or by allowing the signatu
the algorithm to conform to the type of the objects (via function templates.) The former req
run-time mechanisms and at least some awareness of the data representation, while the lat
not. This suggests that templates will always be more efficient. We also believe that template
prove to be more flexible. A function template makes no assumptions about its target othe
how certain operations are spelled, whereas a function operating on an abstract base class a
that the target is a child of the base class. This is problematic when class hierarchie
developed independently. It is more problematic when an algorithm is applicable both to
defined types and to built-in types.

There is no magic solution to programming challenges. Elegant and reusable software
expression of visionary thinking, and we don’t know how to automate creativity. The best we
do is to provide a flexible framework in which to express flashes of insight when they come
believe that the constructs provided by C++, including operator overloading, inheritance
templates, provide such an environment.

References
[1] L.M. Taylor and D.P. Flanagan,PRONTO 2D: A Two-Dimensional Transient Solid Dynamics

Program. SAND86-0594 (1984). Sandia National Laboratories, Albuquerque, NM.

[2] J.S. Peery, K.G. Budge, A.C. Robinson, and D. Whitney,Using C++ As A Scientific Programming

Language, CRAY User’s Group Conference, Santa Fe, NM, Sept. 23-27, 1991.

[3] J.S. Peery,RHALE++: A Next Generation Strong Shock Wave Physics Code Developed in C++, Copper

Mountain Conference on Iterative Methods, Copper Mountain, CO, April 9-14, 1992.

[4] J.S. Peery and K.G. Budge,Experiences in Using C++ to Develop a Next Generation Strong Shock

Wave Physics Code, ASCE 8th Conference for Computing in Civil Engineering, Dallas, TX, June 10

12, 1992.

in
[5] K.G. Budge, J.S. Peery, and A.C. Robinson,High-Performance Scientific Computing Using C++,

USENIX++ Technical Conference, Portland, OR, Aug. 10-14, 1992.

[6] K.G. Budge and J. S. Peery,RHALE: A MMALE Shock Physics Code Written in C++, International

Journal of Impact Engineering14:1-4 (1993).

[7] K.G. Budge,PHYSLIB, A C++ Tensor Class Library, SAND91-1752 (1991), Sandia National

Laboratories, Albuquerque, NM.

[8] M.K. Wong, K.G. Budge, J.S. Peery, and A.C. Robinson,Object-Oriented Numerics: A Paradigm for

Numerical Object-Oriented Programming. Computers in Physics7, 6 (1993).

[9] K.G. Budge, J. S. Peery, A. C. Robinson, and M. K. Wong,C++ as a Language for Object-Oriented

Numerics, presented to the European C++ Users Group, July 1993.

[10] K.G. Budge, J.S. Peery, A.C. Robinson, and M.K. Wong,C++ and Object-Oriented Numerics, Journal

of C Language Translation5, 32 (1993).

[11] J.R. Weatherby, J.A. Schutt, J.S. Peery, R.E. Hogan, and S.W. Attaway,An Object Oriented Finite

Element Code Architecture for Massively Parallel Computers, Supercomputing `93, Nov. 1993.

[12] K.G. Budge, J. S. Peery, A. C. Robinson, and M. K. Wong,Management of Class Temporaries in C++

Translational Systems, Journal of C Language Translation6, 2 (1994).

[13] M.K. Wong, J.S. Peery, and R.M. Summers,Development of High Efficiency Finite Element Codes

C++ , presented at OONSCI ‘95.

[14] A.C. Robinson, J.S. Peery, M.K. Wong, and R.M. Summers,High Efficiency Parallel Production Code

Development Using Finite Elements within the Framework of C++, presented at POOMA ‘96

(December 1996).

[15] A.D. Robison,C++ Gets Faster for Scientific Computing, Computers in Physics10 (1996), pp. 458-

462.

[16]. T. Veldhuizen,Expression Templates, C++ Report7:5 (1995), pp. 26-31

	Experiences Developing ALEGRA: A C++ Coupled Physics Framework
	Kent G. Budge
	James S. Peery

	Abstract
	1 Introduction
	2 Programming a C++ Multiphysics Framework
	2.1 Operator Overloading on Concrete Types
	Fig. 1 Sample code using operator overloading on concrete types

	2.2 Polymorphism by Inheritance
	Fig. 2 Region Class Hierarchy

	2.3 Polymorphism by Genericity
	2.4 C++ Is the Worst Programming Language, Except For All the Others

	3 Lessons Learned
	4 Conclusions
	References
	[1] L.M. Taylor and D.P. Flanagan, PRONTO 2D: A Two-Dimensional Transient Solid Dynamics Program....
	[2] J.S. Peery, K.G. Budge, A.C. Robinson, and D. Whitney, Using C++ As A Scientific Programming ...
	[3] J.S. Peery, RHALE++: A Next Generation Strong Shock Wave Physics Code Developed in C++, Coppe...
	[4] J.S. Peery and K.G. Budge, Experiences in Using C++ to Develop a Next Generation Strong Shock...
	[5] K.G. Budge, J.S. Peery, and A.C. Robinson, High-Performance Scientific Computing Using C++, U...
	[6] K.G. Budge and J. S. Peery, RHALE: A MMALE Shock Physics Code Written in C++, International J...
	[7] K.G. Budge, PHYSLIB, A C++ Tensor Class Library, SAND91-1752 (1991), Sandia National Laborato...
	[8] M.K. Wong, K.G. Budge, J.S. Peery, and A.C. Robinson, Object-Oriented Numerics: A Paradigm fo...
	[9] K.G. Budge, J. S. Peery, A. C. Robinson, and M. K. Wong, C++ as a Language for Object-Oriente...
	[10] K.G. Budge, J.S. Peery, A.C. Robinson, and M.K. Wong, C++ and Object-Oriented Numerics, Jour...
	[11] J.R. Weatherby, J.A. Schutt, J.S. Peery, R.E. Hogan, and S.W. Attaway, An Object Oriented Fi...
	[12] K.G. Budge, J. S. Peery, A. C. Robinson, and M. K. Wong, Management of Class Temporaries in ...
	[13] M.K. Wong, J.S. Peery, and R.M. Summers, Development of High Efficiency Finite Element Codes...
	[14] A.C. Robinson, J.S. Peery, M.K. Wong, and R.M. Summers, High Efficiency Parallel Production ...
	[15] A.D. Robison, C++ Gets Faster for Scientific Computing, Computers in Physics 10 (1996), pp. ...
	[16] . T. Veldhuizen, Expression Templates, C++ Report 7:5 (1995), pp. 26-31

